A Spreadsheet for Calculating the Frequency Response of the ADS1250-54

Jim Todsen
Data Acquisition Group

ABSTRACT

The ADS1250, ADS1251, ADS1252, ADS1253 and ADS1254 (ADS1250-54) family of high-resolution analog-to-digital converters (ADCs) share an advanced delta-sigma (ΔΣ) topology. This application note reviews the frequency characteristics of these devices and shows how to use a companion Microsoft Excel™ spreadsheet (ADS1250-4 Frequency Response.xls), available for download from the TI web site, to calculate the frequency response.

Contents

1 Topology ..2
2 Frequency Response ..3
3 Excel Spreadsheet ..5
4 ADS1250–54 Summary ...6
5 References ..6

Figures

Figure 1. ADS1250–54 Block Diagram ...2
Figure 2. Frequency Response Illustrating Notches at Multiples of fDATA3
Figure 3. Frequency Response Illustrating Response at Multiples of fMOD4
Figure 4. Analysis ToolPak Add-In for Microsoft Excel ...5
Figure 5. ADS1250–4 Frequency Response Excel Spreadsheet ..6

Microsoft Excel™ is a registered trademark of Microsoft Corporation.
1 Topology

The ADS1250-54 devices use a 4th order, delta-sigma modulator followed by a 5th order SINC filter, as shown in Figure 1. Note that the ADS1250 also incorporates a PGA from 1 to 8 before the modulator; the ADS1253 and ADS1254 include a 4-channel multiplexer. The modulator samples the analog input signal at a rate f_{MOD} and produces a digital output. By virtue of the modulator design, the noise is concentrated at the higher frequencies. The digital filter receives this signal and performs a low-pass function, thereby increasing resolution by removing the modulator high frequency noise. In filtering the signal, the digital filter reduces or decimates the data rate to f_{DATA}. The ratio between the modulator rate and the output data rate (f_{MOD} / f_{DATA}) is referred to as the oversampling ratio or decimation rate, and is fixed at 64.

![ADS1250–54 Block Diagram](image)

Figure 1. ADS1250–54 Block Diagram
2 Frequency Response

The digital filter sets the overall frequency response as a function of the modulator rate. The modulator rate is in turn 1/6 of the master clock frequency, f_{CLK}. (See the relevant product datasheets for more detail). The frequency response is given by the following equation:

$$|H(f)| = \frac{\sin\left(\frac{64\pi f}{f_{MOD}}\right)}{64 \sin\left(\frac{\pi f}{f_{MOD}}\right)^{\frac{\pi}{2}}} = \frac{\sin\left(\frac{384\pi f}{f_{CLK}}\right)}{64 \sin\left(\frac{6\pi f}{f_{CLK}}\right)^{\frac{\pi}{2}}}$$

Equation 1

The response is a low-pass function with notches (or “zeros”) at the data output rate and multiples thereof. At these frequencies, the filter has zero gain. To help illustrate the filter characteristics, Figure 2 shows the response for:

$f_{CLK} = 6\text{MHz} \rightarrow f_{MOD} = 1\text{MHz} \rightarrow f_{DATA} = 15.6\text{kHz}.$

Figure 2. Frequency Response Illustrating Notches at Multiples of f_{DATA} ($f_{CLK} = 6\text{ MHz}$)
The digital filter low-pass characteristic repeats at multiples of the modulator rate. Figure 3 shows the response plotted out to 2.0MHz. Notice how it repeats at 1MHz and 2MHz.

![Frequency Response Illustrating Response at Multiples of f_{MOD} ($f_{CLK} = 6$MHz).](image)

Figure 3. Frequency Response Illustrating Response at Multiples of f_{MOD} ($f_{CLK} = 6$MHz).

As a practical note, the digital filter will attenuate high-frequency noise on the inputs up to the frequency where the response repeats (nearly up to 1MHz input in Figure 3). To prevent external noise above this frequency from reducing performance, make sure to remove any high-frequency noise with anti-aliasing filtering before the ADC inputs. A simple RC filter with a corner frequency above the signal band, but below f_{MOD}, typically suffices.
3 Excel Spreadsheet

The companion Microsoft Excel spreadsheet to this application note (see References) calculates the ADS1250–54 frequency response for a given CLK frequency. Before using this sheet, make sure that the Analysis ToolPak is available as shown in Figure 4. This menu is found under Tools/Add-Ins in Microsoft Excel (version 2002).

![Analysis ToolPak Add-In for Microsoft Excel](image)

Figure 4. Analysis ToolPak Add-In for Microsoft Excel
With the analysis toolpak installed, simply open the spreadsheet and enter the appropriate CLK frequency in cell C6. You can also enter a specific input frequency of interest in cell C7. Figure 5 shows the spreadsheet. The modulator sampling rate \(f_{\text{MOD}} \), the output data rate \(f_{\text{DATA}} \) and the gain at the frequency specified in cell C7 are calculated in cells C9-C11. The frequency response is plotted in the area to the right. The spreadsheet is protected (without a password) so that only the CLK frequency and Input Frequency cells (C6 and C7) can be edited. If you want to adjust the plot (for example, to change the X- or Y-axis scale), use the standard Excel graphing controls.

Figure 5. ADS1250–4 Frequency Response Excel Spreadsheet
4 ADS1250–54 Summary

Table I summarizes the maximum CLK frequency and the corresponding modulator sampling, output data rate and -3dB signal bandwidth for each device.

Table 1. Summary of ADS1250–54

<table>
<thead>
<tr>
<th>Product</th>
<th>Maximum CLK Frequency</th>
<th>Modulator Sampling Rate: f_{MOD}</th>
<th>Data Rate: f_{DATA}</th>
<th>Signal Bandwidth (-3dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADS1250</td>
<td>9.6MHz</td>
<td>1.6MHz</td>
<td>25.0kHz</td>
<td>5.09kHz</td>
</tr>
<tr>
<td>ADS1251</td>
<td>8.0MHz</td>
<td>1.3MHz</td>
<td>20.8kHz</td>
<td>4.24kHz</td>
</tr>
<tr>
<td>ADS1252</td>
<td>16.0MHz</td>
<td>2.7MHz</td>
<td>41.7kHz</td>
<td>8.48kHz</td>
</tr>
<tr>
<td>ADS1253</td>
<td>8.0MHz</td>
<td>1.3MHz</td>
<td>20.8kHz</td>
<td>4.24kHz</td>
</tr>
<tr>
<td>ADS1254</td>
<td>8.0MHz</td>
<td>1.3MHz</td>
<td>20.8kHz</td>
<td>4.24kHz</td>
</tr>
</tbody>
</table>

5 References

ADS1250 product datasheet (SBAS114)
ADS1251 product datasheet (SBAS184)
ADS1252 product datasheet (SBAS127a)
ADS1253 product datasheet (SBAS199)
ADS1254 product datasheet (SBAS213)
ADS125x Frequency Response.xls (Microsoft Excel file)
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Audio</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Automotive</td>
</tr>
<tr>
<td>DSP</td>
<td>Broadband</td>
</tr>
<tr>
<td>Interface</td>
<td>Digital Control</td>
</tr>
<tr>
<td>Logic</td>
<td>Military</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Optical Networking</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Security</td>
</tr>
<tr>
<td></td>
<td>Telephony</td>
</tr>
<tr>
<td></td>
<td>Video & Imaging</td>
</tr>
<tr>
<td></td>
<td>Wireless</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated