В HTML      В PDF
микроэлектроника, микросхема, микроконтроллер, память, msp430, MSP430, Atmel, Maxim, LCD, hd44780, t6963, sed1335, SED1335, mega128, avr, mega128  
  Главная страница > Обзоры по типам > Операционные усилители

реклама

 
радиационно стойкие ПЗУ Миландр

Продажа силового и бронированного кабеля и провода в Москве

текст еще



Схема интегрирования

Наиболее важное значение для аналоговой вычислительной техники имеет применение операционных усилителей для реализации операций интегрирования. Как правило, для этого используют инвертирующее включение ОУ (рис.2).

Схема инвертирующего интегратора

Рис. 2. Схема инвертирующего интегратора

По первому закону Кирхгофа с учетом свойств идеального ОУ следует для мгновенных значений: i1 = - ic. Поскольку i1 = u1/R1, а выходное напряжение схемы равно напряжению на конденсаторе:

то выходное напряжение определяется выражением:

Постоянный член uвых(0) определяет начальное условие интегрирования. С помощью схемы включения, показаной на рис.3, можно реализовать необходимые начальные условия. Когда ключ S1 замкнут, а S2 разомкнут, эта схема работает так же, как цепь, изображенная на рис.2. Если же ключ S1 разомкнуть, то зарядный ток при идеальном ОУ будет равен нулю, а выходное напряжение сохранит значение, соответствующее моменту выключения. Для задания начальных условий следует при разомкнутом ключе S1 замкнуть ключ S2. В этом режиме схема моделирует инерционное звено и после окончания переходного процесса, длительность которого определяется постоянной времени R3C, на выходе интегратора установится напряжение

Uвых = -(R3 / R2)U2. (1)

Интегратор с цепью задания начальных условий

Рис. 3. Интегратор с цепью задания начальных условий

После замыкания ключа S1 и размыкания ключа S2 интегратор начинает интегрировать напряжение U1, начиная со значения (2). Фирма Burr-Brown выпускает двухканальный интегратор ACF2101 со встроенными интегрирующими конденсаторами емкостью 100 пФ ключами сброса и хранения . Входные токи усилителей не превышают 0,1 пА.

Используя формулу для определения коэффициента передачи инвертирующего усилителя и учитывая, что в схеме на рис. 2 R1=R, a вместо R2 включен конденсатор с операторным сопротивлением Z2(s)=1/(sC), можно найти передаточную функцию интегратора

(2)

Подставив в (2) s=jw , получим частотную характеристику интегратора:

Устойчивость интегратора можно оценить по частотным характеристикам петли обратной связи, причем в этом случае коэффициент передачи звена обратной связи будет комплексным:

Для высоких частот b стремится к 1 и его аргумент будет нулевым. В этой частотной области к схеме предъявляются те же требования, что и к усилителю с единичной обратной связью. Поэтому здесь также следует ввести коррекцию частотной характеристики. Чаще для построения интегратора используют усилитель с внутренней коррекцией. Типичная ЛАЧХ схемы интегрирования на ОУ приведена на рис. 4. Постоянная интегрирования t = RC принята равной 100 мкс. Из рис. 4 видно, что при этом минимальное усиление цепи обратной связи составит |Kп|=|bKU| @ 600, т.е. будет обеспечена погрешность интегрирования не более 0,2%, причем не только для высоких, но и для низких частот.

Частотная характеристика интегратора

Рис. 4. Частотная характеристика интегратора

В заключение отметим, что к операционным усилителям, работающим в схемах интеграторов, предъявляются особенно высокие требования в отношении входных токов, напряжения смещения нуля и дифференциального коэффициента усиления по напряжению KU. Большие токи и смещение нуля могут вызвать существенный дрейф выходного напряжения при отсутствии сигнала на входе, а при недостаточном коэффициенте усиления интегратор представляет собой фильтр низких частот первого порядка с коэффициентом усиления KU и постоянной времени(1+KU)RC.



<-- Предыдущая страница Оглавление Следующая страница -->





 
Впервые? | Реклама на сайте | О проекте | Карта портала
тел. редакции: +7 (495) 514 4110. e-mail:info@eust.ru
©1998-2016 ООО Рынок Микроэлектроники